A Priori Error Analysis with Intervals
نویسندگان
چکیده
Error analysis is defined by the following concern: bounding the output variation of a (nonlinear) function with respect to a given variation of the input variables. This paper investigates this issue in the framework of interval analysis. The classical way of analyzing the error is to linearize the function around the point corresponding to the actual input, but this method is local and not reliable. Both drawbacks can be easily circumvented by a combined use of interval arithmetic and domain splitting. However, because of the underlying linearization, a standard interval algorithm leads to a pessimistic bound, and even simply fails (i.e., returns an infinite error) in case of singularity. We propose an original nonlinear approach where intervals are used in a more sophisticated way through the so-called springs. This new structure allows to represent an (infinite) set of intervals constrained by their midpoints and their radius. The output error is then calculated with a spring arithmetic in the same way as the image of a function is calculated with interval arithmetic. Our method is illustrated on an application of geopositioning.
منابع مشابه
Optimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملA Priori Error Analysis and Spring Arithmetic
Error analysis is defined by the following concern: Bounding the output variation of a (nonlinear) function with respect to a given variation of the input variables. This paper investigates this issue in the framework of interval analysis. The classical way of analyzing the error is to linearize the function around the point corresponding to the actual input, but this method is local and not re...
متن کاملUncertainty Analysis of Analytical Results When Errors are Not Normally Distributed*
This paper presents a method for calculating a priori uncertainty intervals for plutonium interpretations by fission track analysis (FTA) of human urine samples. The derivations of the method are adaptable to estimating uncertainty intervals of analysis of single samples, based on calibration data obtained from multiple samples spiked over a range of concentration. The data used in last year’s ...
متن کاملA priori error estimates for elliptic optimal control problems with bilinear state equation
In this paper a priori error analysis for the finite element discretization of an optimal control problem governed by an elliptic state equation is considered. The control variable enters the state equation as a coefficient and is subject to pointwise inequality constraints. We derive a priori error estimates for the discretization error in the control variable and confirm our theoretical resul...
متن کامل